時至今日,光導纖維光束傳輸技術已經成為高功率固體連續(CW)激光能夠被廣泛工業應用的核心驅動,但該技術卻不能被應用于超快脈沖激光。而微納結構的空芯光纖的出現使之成為可能,高能量的皮秒和飛秒脈沖激光能夠被限制在其極小的中空芯部結構,以極佳的光束質量進行傳輸。當將其包入一根堅固的光纜外殼,或許意味著一個新的激光傳輸時代的開啟。(見圖1)
圖1:適用于超快激光應用的光纜
由于可以對幾乎任何材料進行超高精度的加工,超快激光展現出不斷增長的應用需求。當其被應用于真正的工業生產時, 要求精確的控制脈沖的時間、空間和形狀, 以便實現最佳的超快激光輸出。光束傳輸系統作為連接激光源
和具體應用之間的光學界面,是激光加工系統中尤為關鍵的一環。它的主要目標是在盡可能簡單高效且不干擾激光束的前提下,將激光源的激光引導至被加工件的特定位置。但同時,對激光束在時間和空間上的整形、加強需求, 作為一個附加功能越來越多的被提出。
在上世紀90年代,基于光纖技術的光束傳輸系統作為主要突破,使連續半導體和固體激光器真正進入工業激光應用,而其也成為數千瓦功率連續激光應用的標準。可以預見的是,如果有類似的光纖傳輸系統可用于超快激光應用,那是十分值得期待的。
超快脈沖的光束傳輸
目前對于脈寬在幾皮秒且脈沖能量滿足材料加工需求的這類新興超快激光應用,普遍采用空間光路傳輸。這些基于鏡片組成的系統需要繁瑣的細微調整(尤其是長距離傳輸),并且受到灰塵和顆粒污染的困擾。在整個光路中,數量龐大的光學組件成為光束質量損失的潛在的根源。此外,此類加工設備普遍需要一個精工細作的穩定基臺結構,激光器必須盡可能的接近加工位置,在整體系統設計方面這意味著需要花費大量的成本和經歷。
缺少標準的光束傳輸解決方案導致了系統設計方案的千差萬別,這極大阻礙了超快激光得到更廣泛的工業應用。更換激光光源或其他部件都需要重新對整個系統進行調整和校準,這最終無疑提高了成本。基于光纖的光束傳輸系統當下還無法實現,這主要由于傳統的光纖并不適合傳輸超快激光。受限于本身的色散特性,會使脈寬變寬,損傷閾值也無法滿足需求,而自聚焦(self-focusing)、受激布里淵散射(stimulated Brillouin scattering)以及拉曼散射(Raman scattering)等非線性效應,會輕易的破壞光纖材料或脈沖波形。所以作為結論,用于工業應用的超快脈沖無法通過傳統的玻璃光纖進行傳輸。
可在中空芯部約束光束的新型光纖
微納結構的空芯光纖(Microstructured hollow-core fibers,簡稱MHCFs,見圖2)支持光束在中空芯部(例如充氣或真空狀態)中傳輸,這使得其能夠傳輸極高的功率并且徹底消除了非線性效應。這種光纖從光子晶體光纖(photonic crystal fibers)演變而來,最早由來自英國巴斯大學(Bath University)的Russell,Knight和Birks共同開發研制。從那之后,各種不同樣式的微納結構光纖被開發出來,并證明了其可以傳輸高功率超快激光的潛在價值。此類光纖擁有類似于單模階躍折射率光纖(step-index fibers)的芯部尺寸,而約束光線的芯部構造像是不規則的水晶。但不同的是,其芯部長度可以大大延長,并且承受更高的損傷閾值。99%的激光光線在其中空芯部中傳導,可允許的脈沖能量等級提高到了毫焦耳(mJ)級別,大大超過了許多材料加工所需的能量等級。
圖2:不同類型的微納結構空芯光纖(MHCFs)以及光束質量(M2)為1.3時遠近模場分布特性
將此類光纖適當的集成入工業光束傳輸系統,在保證完美的光束質量的前提下,幾百瓦(multi-100W)和幾百微焦(multi-100μJ)的超快激光脈沖可以被可靠的傳輸。這樣的光束傳輸系統使得激光源和具體應用得以分離,可以將激光能量分送到不同的工作站,甚至柔性化的機器人系統也成為現實,這些無疑都大大增強了工業應用的可能性。
空芯光纖由于具有極低的色散特性,非常適合用于飛秒級別的脈寬。在900-1100納米光譜范圍區間,30至70dB/km或1%每米的衰減值是可以實現的。