單脈沖刻線機理本身的特征對脈沖重復頻率提出了一定的限制。為了防止接觸面半導體層的脫落,加工過程中需要的典型脈沖重復頻率為35~45kHz。常用的刻蝕閾值約為2J/cm2,也就是能將25μJ的激光能量聚焦到直徑為40μm的面積上,其平均功率非常低。由于綠光激光器的平均功率均為數瓦量級,因此能夠將光束分光后進行多光束并行加工,從而進一步提高工作效率。
對于P1、P2和P3層的刻線應用而言,用于微加工應用的、輸出波長為1064nm和532nm的結構小巧緊湊的二極管泵浦激光器,無疑是無疑是一種理想的選擇,并且這種激光器能夠提供極高的脈沖穩定性。這類激光器的脈沖持續時間為8~ 40ns,脈沖重復頻率為1~100kHz。
清除保護
為了防止太陽能電池模塊被腐蝕或短路,必須要在其邊緣留出大約1cm寬邊緣,用于接下來整個電池模塊的封裝。目前多使用噴砂的方法來清除這個邊緣。盡管噴砂方法的投資成本較低,但是這個過程卻會帶來磨損、砂的清除以及防塵污染方面的成本。薄膜太陽能電池模塊的生產需要潔凈的、經濟實惠的解決方案,激光加工方案無疑是最佳選擇。通過提高激光的平均功率,能夠獲得卓越的加工質量。激光加工可以實現大約50cm2/s的去除速度,甚至在30s之內就能加工完成一塊標準尺寸的太陽能電池模塊。
事實上,用同一個脈沖就可以清除所有的邊緣薄膜層,并且清除速率的提高與激光的平均功率密切相關。具有高平均功率和高脈沖能量的激光,可以一次性清除特定的區域。最適用這種加工應用的是采用光纖傳輸的激光器系統,其輸出方形或矩形光斑。激光經過光纖傳輸后能量分布更加均勻,從而實現清除效果的高度一致性。利用光斑的平行組合,加工效率能比采用傳統光纖提高50%以上,同時還在保證加工安全的前提下降低了脈沖重復頻率。另外,還可以與掃描振鏡結合適用,以減少加工過程中的非生產周期。當然,激光器也應提供相應的分時輸出選擇,來減少非生產時間。此外,可以采用幾個不同的工作站共享同一臺激光器的加工方案,這樣就可以做到產品的上下料時間并不影響激光器的生產效率。
未來的激光工藝
CI(G)S太陽能電池模塊制造中 特殊材料的使用,對激光加工技術提出了巨大的挑戰。如果適用的基底材料為玻璃,那么鉬材料就被沉積到玻璃上。但是由于鉬具有熔點高、熱傳導性好以及高熱容等特性,導致加熱時會出現裂紋和脫落現象。由于這些缺點在用納秒激光進行加工時是無法避免的,因此激光器的使用與所獲得的加工質量密不可分。同樣,吸收層材料對熱也具有相當的敏感性,硒(Se)相對于銅(Cu)、銦(In)、鎵(Ga)等金屬材料的熔點要低,它會在低溫時就能從粘合的地方分離。這種一來,沒有了硒層的半導體就變成了合金層,導致通過長脈沖激光產生的熱量使邊緣短路。
皮秒激光器將為上述問題提供理想的解決方案。用超短脈沖激光去除薄膜材料,不會產生嚴重的邊緣熱影響區。波長為1030nm、515nm和343nm的高性能皮秒激光器,可應用于CI(G)S薄膜太陽能電池模塊的結構化。超短脈沖激光器將會取代機械刻劃工藝,進一步提高加工質量和加工效率。
轉載請注明出處。