2 陶瓷材料的熱輻射機理
我們知道,熱交換的基本途徑為:傳導、對流和輻射。為了有效散熱,人們常通過減少熱流途徑的熱阻和加強對流系數來實現,往往忽略了熱輻射。LED燈具一般采用自然對流散熱,散熱器將LED產生的熱量快速傳遞到散熱器表面,由于對流系數較低,熱量不能及時地散發到周圍的空氣中,導致表面溫度升高,LED的工作環境惡化。提高輻射率可以有效地將散熱器表面的熱量通過熱輻射的形式帶走,一般鋁制散熱器通過陽極氧化來提高表面輻射率,陶瓷材料本身可以具有高輻射率特性,不必進行復雜的后續處理。
陶瓷材料的輻射機理是由隨機性振動的非諧振效應的二聲子和多聲子產生。高輻射陶瓷材料如碳化硅、金屬氧化物、硼化物等均存在極強的紅外激活極性振動,這些極性振動由于具有極強的非諧效應,其雙頻和頻區的吸收系數,一般具有100~100cm-1數量級,相當于中等強度吸收區在這個區域剩余反射帶的較低反射率,因此,有利于形成一個較平坦的強輻射帶。
一般來說,具有高熱輻射效率的輻射帶,大致是從強共振波長延伸到短波整個二聲子組合和頻區域,包括部分多聲子組合區域,這是多數高輻射陶瓷材料輻射帶的共同特點,可以說,強輻射帶主要源于該波段的二聲子組合輻射。除少數例外,一般輻射陶瓷的輻射帶集中在大于5m的二聲子、三聲子區。因此,對于紅外輻射陶瓷而言,1~5m波段的輻射主要來自于自由載流子的帶內躍遷或電子從雜質能級到導帶的直接躍遷,大于5m波段的輻射主要歸于二聲子組合輻射。
劉維良、駱素銘對常溫陶瓷紅外輻射做了研究,測試的陶瓷樣品紅外輻射率約0.82~0.94,對不同表面質量的遠紅外陶瓷釉面也進行了測試,輻射率約0.6~0.88,并從陶瓷斷口SEM照片中得出遠紅外陶瓷粉在釉中添加量為10wt%時的輻射性能、釉面質量、顏色和成本較佳,其輻射率達到了0.83,其他性能均達到國家日用瓷標準要求。崔萬秋、吳春蕓對低溫遠紅外陶瓷塊狀樣品進行了測試,紅外輻射率為0.78~0.94。李紅濤、劉建學研究發現,常溫遠紅外陶瓷輻射率一般可達0.85,國外Enecoat釉涂料最高輻射率可達0.93~0.94。眾多研究均表明,陶瓷材料或釉面本身具有很高的紅外輻射率,是其替代傳統鋁制散熱器的一大重要參數。
3 氧化鋁陶瓷材料的LED照明燈具研究
3.1 陶瓷LED燈具實驗測試
氧化鋁陶瓷的導熱系數與氧化鋁的成分(純度)有很大的關系(如表2所示)。常用的Nom.95%氧化鋁陶瓷(簡稱為95陶瓷)導熱系數約22.4W/mK,耐壓10kV/mm,由此制成LED燈具的樣品如圖4所示。
燈具型號為GU10,外形尺寸49.5mm×50mm,鰭片散熱器和燈座均采用95陶瓷材料,并通過螺紋連接。
燈具安裝三顆Handson(漢德森)LED光源,內置恒流驅動電源,總消耗功率約3.55W,采用透鏡配光,總光通量約150lm。
由于LED的結溫不能直接測得,常采用間接測試法,目前主要有2種:
①電參數法:LED隨著結溫的上升,兩端電壓呈線性降低,比例系數K的典型值為4mV/℃,結溫可按式(1)進行計算;②熱電偶間接測試法:通過測試LED焊腳的溫度sp間接得到結溫值,此時結溫可按式(2)進行計算。
式中:為結溫,0為初始溫度,K為比例系數,△F為電壓變化的絕對值。
式中:為結溫,sp為LED焊腳的溫度,th為PN結到焊腳的平均熱阻,為芯片功率。
本次進行溫度測試的方法為熱電偶測試法。LED焊腳測試點為兩處,燈體散熱器測試點為三處,環境溫度采用兩根熱電偶測試,測試結果如表3所示。
3.2 陶瓷LED燈具和鋁制壓鑄LED燈具的計算機仿真
為了研究和設計陶瓷LED燈具,我們借助計算機軟件進行仿真分析。本次采用的流場分析軟件為Flo-EFD(簡稱EFD,EngineeringFluidDynamics),EFD為NIKA的旗艦產品,主要用于汽車、航空航天、機械、船舶、電子通訊、醫療器械、能源化工、暖通、流體控制設備、LED半導體行業等。軟件可進行各種LED封裝產品、航空航天燈、各種節能燈、LED發光管、車用燈具、顯示屏等的熱分析。
為便于與實驗測試進行比較,計算機仿真分析時,將環境溫度設為15℃,得到的溫度分布如圖5所示(為便于查看,隱藏了透鏡及其固定部分)。為了比較95陶瓷燈具與鋁制壓鑄燈具的熱學性能,通過計算機仿真得到的溫度分布如圖6所示(燈具散熱器材料為鋁合金ADC12,燈座為PBT塑料,其余參數不變。)
3.3 結果分析
陶瓷燈具的燈座為95陶瓷材料(鋁制壓鑄燈具的燈座為PBT塑料),各部件得到了充分的利用。實驗測試時,1.0h基本達到熱平衡,環境溫度的算術平均值約14.4℃,將實驗測試和計算機仿真的溫度分布值進行分析比較,結果見表4所示。
計算機分析結果顯示,自然對流情況下,95陶瓷燈具的熱學性能不亞于鋁制壓鑄燈具,陶瓷燈具可以充分利用各個零部件的幾何特征,所以燈具的整體溫度降低到了較低水平。
4 陶瓷材料用于LED照明燈具的前景
陶瓷的使用具有悠久的歷史,現代工藝制備的陶瓷材料導熱率較高,空氣自然對流下,完全可以充當LED照明燈具的散熱材料。氮化鋁陶瓷可以直接作為封裝晶架或線路層;氧化鋁陶瓷價格便宜,燒結技術成熟,可釉成不同顏色,由于其電絕緣性能優良,并耐酸堿性,受到很多客戶的青睞。但是,陶瓷材料并不是完美無瑕的,陶瓷散熱器鰭片不能太薄(厚度≥1.5mm),密度稍大(約為鋁的1.5倍),中高應力下會產生裂紋,無釉表面容易污染等。#p#分頁標題#e#
總的來說,陶瓷材料用于LED的前景良好,特別適于體積較小的照明燈具。
轉載請注明出處。