日前,泰州巨納新能源有限公司研制的商用石墨烯飛秒光纖激光器(Fiphene)問世,這也是全球首臺商用石墨烯飛秒光纖激光器。同時,該激光器還創造了脈沖寬度最短(105fs)和峰值功率最高(70kW)兩項石墨烯飛秒光纖激光器世界紀錄。
飛秒光纖激光器的應用領域非常廣闊,包括激光成像、全息光譜及超快光子學等科研應用,以及激光材料精細加工、激光醫療(如眼科手術)、激光雷達等領域。傳統的飛秒光纖激光器核心器件——半導體飽和吸收鏡(SESAM)采用半導體生長工藝制備,成本很高,且技術由國外壟斷。
在飛秒光纖激光器領域,石墨烯被認為是取代SESAM的最佳材料。2010年諾貝爾物理學獎獲得者撰文預測石墨烯飛秒光纖激光器有望在2018年左右產業化。要實現真正的產業化,需要解決高質量石墨烯制備、大規模低成本石墨烯轉移、石墨烯與光場強相互作用、石墨烯飽和吸收體封裝以及激光功率穩定控制等一系列關鍵技術。泰州巨納新能源有限公司經過多年持續研究,成功攻克了這些關鍵技術,率先實現了石墨烯飛秒光纖激光器的產品化,主要性能指標均高于同類產品,具有很高的性價比和很強的市場競爭能力。
該產品被命名為Fiphene,取Fiber(光纖)和Graphene(石墨烯)兩個詞的組合。泰州巨納新能源有限公司計劃以Fiphene為平臺,推出更多石墨烯光纖激光器產品,將石墨烯的應用發展向前推進。
石墨烯特性、應用以及發展狀況
2004年,兩位俄裔英籍科學家將石墨烯成功從石墨中分離。石墨烯集合世界上最優質的各種材料品質于一身。石墨烯無疑是過去十年,乃至未來幾十年,所有材料“明星”中最耀眼的一顆。如果說20世紀是硅的世紀,神奇的石墨烯則是21世紀新材料的寵兒。
雖然發現至今尚不足十年,石墨烯卻不斷在科學界、產業界引發一輪輪波瀾。隨著人們對它的認識逐漸明晰,其神秘面紗就像發現之初那樣被一層層揭開——薄且堅硬,透光度好,導熱性強,導電率高,結構穩定,電子遷移速度快,能在常溫下觀察到量子霍爾效應……
從假設到現實
石墨烯的發現,之所以意義重大,是因為它創造了諸多“紀錄”
石墨烯是構成石墨、木炭、碳納米管和富勒烯等碳同素異形體的基本單元材料,是一種二維晶體。
石墨烯的結構一直被認為只存在于理論之中,無法單獨穩定存在。直至2004年,英國物理學家安德烈·海姆和康斯坦丁·諾沃肖洛夫成功地從石墨中分離出石墨烯,才證實它可以單獨存在。
最初,科學家從石墨中剝離出石墨片,然后將薄片的兩面粘在一種特殊的膠帶上,撕開膠帶,就能把石墨片一分為二。通過反復的操作,石墨片變得越來越薄。最后,他們得到了僅由一層碳原子構成的薄片,這就是石墨烯。
憑借“在二維石墨烯材料的開創性實驗”,這兩位科學家共同獲得了2010年的諾貝爾物理學獎。
石墨烯的發現,之所以意義重大,是因為它創造了諸多“紀錄”。
石墨烯是世上最薄的材料。
“石墨烯只有0.34納米厚,十萬層石墨烯疊加起來的厚度大概等于一根頭發絲的直徑,人們用肉眼是看不見它的。”中科院重慶研究院微納制造與系統集成研究中心副主任史浩飛接受《中國科學報》記者采訪時如此描述。
石墨烯是人類已知強度最高的物質。
它比鉆石還堅硬,強度比世界上最好的鋼鐵還要高上100倍。
哥倫比亞大學的物理學家用金剛石制成的探針測試石墨烯的承受能力,在被實驗的石墨烯樣品微粒開始碎裂前,它們每100納米距離上可承受的最大壓力竟然達到了2.9微牛左右。這意味著,“如果用石墨烯制成包裝袋,那么它將能承受大約兩噸重的物品”。
石墨烯電阻率極低,電子遷移的速度極快。
在石墨烯中,電子能夠極為高效地遷移,遷移速率僅為光速的三百分之一,遠遠高出其在硅、銅等傳統半導體和導體中的速率。
“電子在石墨烯里邊好像沒有質量一樣,運動速度非常快。”中國科學技術大學教授曾長淦表示,“電子能量不會被損耗的特點,使這種材料具有了非比尋常的優良特性。”
它的另一特性讓材料學家更為驚喜,該材料幾乎完全透光,透光率在97%以上。
2012年,美國IBM公司成功研制出首款由石墨烯圓片制成的集成電路,使得石墨烯特殊的電學性能彰顯出應用前景。中科院院士高鴻鈞對此表示:“石墨烯材料具有優異的電學性質,有望被用于制造新一代高性能電子學器件。”
引導科技革命
在世界范圍內,針對石墨烯研究與應用的熱潮在持續涌動
石墨烯神秘又神奇的特殊性能讓人們對它的應用充滿幻想。
在國內,有關石墨烯的應用研究開展得如火如荼。
我國在石墨烯的基礎研究與產業化推進中處于世界前列,多支研究隊伍在石墨烯的性能研究與制備技術方面取得突破性成果。其中,中國科學院重慶綠色智能技術研究院的石墨烯薄膜制備技術以2.1億元人民幣的價格實現轉讓,更是讓研究者與開發者蠢蠢欲動。
在世界范圍內,針對石墨烯研究與應用的熱潮在持續涌動。
據劍橋知識產權公司的統計數據顯示,截至今年5月,全球已經獲批和正在申請的石墨烯專利共計9218項,專利申請數量在過去5年更是增加了4倍;自2004年開始,石墨烯領域的相關研究論文呈指數上升趨勢,迄今論文總數已超過2萬篇,僅2012年一年就超過了6000篇。
“從來沒有一種材料能像石墨烯這樣在各個領域都廣受關注。”曾長淦感慨,雖然國內外目前還沒有實實在在的石墨烯產品問世,“但它是眾多‘明星’材料中最接近應用的材料。”
超輕防彈衣、超強光轉換效率激光武器、超薄超輕型飛機、超薄能折疊的手機、高強度航空材料、高性能儲能和傳感器、超級電容器,甚至更富想象力的太空電梯,越來越多基于石墨烯材料的未來設備進入科學家的研究視野。
其中,透明電極的應用最引人注目。“石墨烯良好的電導性能和透光性能,使它在透明電導電極方面有非常好的應用前景。”曾長淦表示,如今電子產品中的觸摸屏、液晶顯示、有機光伏電池、有機發光二極管等都需要良好的透明電導電極材料。
傳統的電導電極應用的是氧化銦錫,而這種材料脆度較高,比較容易損毀。
與之相比,石墨烯不僅更加堅硬,性能也更好。
“氧化銦錫光通過率比較低,用石墨烯的話,顯示器的屏幕會更亮。”曾長淦表示,石墨烯在透明電極方面的應用會大幅降低電子設備的成本,并使其更省電、更清晰,“十年內,石墨烯在透明電極方面肯定能夠實現商業化”。
97%以上的光通過率在為透明電極的應用帶來變革的同時,也使太陽能產業的升級成為可能。
據專家介紹,當前市面上的太陽能電池板基本為多晶硅,其光電轉換率為30%左右,而石墨烯太陽能技術的光電轉換效率高達60%,是現有多晶硅太陽能技術的2倍。
近期,美國麻省理工學院與蘋果公司相繼發布研究報告,論述了石墨烯作為太陽能電池為電子設備提供能源的可能,蘋果公司更是為此提交了專利申請,為在電子設備中搭載石墨烯太陽能電池提供解決方案。
中科院寧波材料技術與工程研究所研究員劉兆平在接受《中國科學報》記者采訪時表示,石墨烯微片可以與鋰離子電池電極活性材料顆粒形成二維導電接觸,在電極中構建三維導電網絡,因而可大幅提升電池綜合性能。
初步實驗結果表明,與常規方案的電池相比,采用石墨烯導電劑的鈷酸鋰電池容量高出3%,放電容量從72%提高到92%。
突破制備技術
制備技術是石墨烯進入應用領域、實現產業化的攔路虎之一
盡管國內外科學家對石墨烯的研究越來越透徹,對其應用的探索成果也不斷涌現,然而市面上卻鮮有真正的石墨烯材料產品問世。
制備技術是石墨烯進入應用領域、實現產業化的攔路虎之一。高成本的制備技術推升了石墨烯的市場價格,其價格一度達到每克5000元,是黃金的十幾倍。
高鴻鈞在去年年底召開的以石墨烯為主題的香山科學會議上直言,我國在石墨烯制備方法研究領域還面臨較大挑戰。“挑戰主要在于如何制備大面積、雜質缺陷可控的高質量單晶材料以及如何改進現有硅基工藝融合的石墨烯加工技術。”
盡管如此,我國科學家在石墨烯的制備技術研發方面仍然實現了重大突破。劉兆平率領研究團隊歷經多年努力,研發出了石墨烯產業化制備技術,將石墨烯的制造成本從每克5000元降至每克3元,直接帶來國外客戶的大量訂單。
去年年初,中科院重慶綠色智能技術研究院宣布實現了15英寸單層石墨烯的制備,并成功地將石墨烯透明電極應用于電阻觸摸屏上,制備出7英寸石墨烯觸摸屏。
值得一提的是,上述兩個研究團隊均與上海南江集團聯合創建了專業的石墨烯生產公司,分別量產石墨烯微片與石墨烯薄膜。
微尺度物質科學國家實驗室的曾長淦研究團隊更是另辟蹊徑,將常規的基于氣態碳源的銅表面石墨烯生長需要1000℃的高溫降至300℃,創造了石墨烯化學氣相沉積法生長的最低溫度。
“隨著石墨烯制備技術的升級,產業化生產的條件也不斷成熟,相信在未來幾年,石墨烯制成的新產品將不斷涌現。”曾長淦表示。
轉載請注明出處。