激光打標技術是激光加工最大的應用領域之一,過去幾十年間,激光打標產業取得了顯著的發展,這個市場最重要的變化是推出了低功率脈沖光纖激光器,現在已經發展到幾乎每個供應商都能在其產品供給范圍內提供這類光纖激光打標設備。
這些激光器的波長通常屬于1070 nm左右的近紅外(NIR)范疇,非常適用于多數金屬產品的打標。鋁、銅及其合金等材料均可采用激光打標,但想在低熱條件下在這類金屬上打出肉眼清晰可見的深色標記,不同金屬打標的難易也不盡相同。
激光表面處理
在廣泛的工業激光材料加工領域,激光表面加工這一術語通常被用于描述一系列采用連續波(CW)、功率為數千瓦的近紅外激光源的加工活動。然而,以上工藝與本文所描述的可被視作為微米和納米級表面應用的技術完全不同。采用短脈沖皮秒(10-12)和飛秒(10-15)超快激光器的許多工藝已經確定。
這些工藝的主要缺點是:即便屬于這類激光器門類中的低功率系列產品,它們的投資與運行成本仍然很高。由于加工速度通常取決于激光器的平均功率,對于大多數工業激光用戶而言,實際表面覆蓋率條件下的激光加工成本可能太高。
最近,成熟的納秒級脈沖光纖激光器的脈寬范圍已擴展到亞納秒級,隨之而來的是以數量級增加的峰值功率能力。這使開發出一種采用具成本效益的長皮秒激光源的新型激光表面加工工藝成為了可能。
一系列不同層次激光表面處理工藝
雖然這些技術通常被稱為激光表面處理,從機械角度來看,這些工藝與激光打標息息相關,因為它們局限于對部件的表面處理,通常需要結合采用激光消融與熔融工藝。
激光表面毛化處理與激光打標分析
通過一定方式改變激光打標表面區域,使之與未打標區域形成視覺上的對照,激光標記具有重要的應用。
01鋁金屬的激光表面毛化處理
對于鋁質材料來說,其自然氧化層具有吸濕性,且厚度會隨時間增大。所以,去除這層粗糙的受污染的氧化層,以暴露下層鋁材,可能足以形成充足的對比度。另一個比較復雜的因素是,下層鋁材的熔融或消融程度會顯著影響標記的外觀。
仔細調整激光器的參數,可以產生更為光亮的表面,以展現出對比度提高的熔融效果。通過使用~1mJ的脈沖能量,可以在鋁材上形成色澤較深、氧化程度高的表面,但是,如果想要獲得低的L*值,同時又能夠獲得堅固的、非易碎型的表面,使得標記的外觀不會隨著觀察角度的變化而改變,則需要對工藝進行仔細的控制。提高消融水平以形成微粗糙表面,也可以獲得顏色更深、吸收性較高、L*值較大的表面(圖3)。所顯示的表面尺寸均<10μm,表面粗糙度(Ra)遠低于<5μm。
用5ns、75μJ的激光器處理的深灰色鋁材表面,放大倍數:200X
從鋁表面去除陽極化涂層是一種廣泛使用的技術,相同的規則也適用于在基板上應用激光——熔融性強便意味著能夠產生更具反射效果的表面。不管是裸鋁材還是陽極化鋁材,打標速度均達到1-2m/s的高水平。最近,已經開發出在特定陽極化涂層上的激光打標技術,使用低納秒、亞納秒光纖激光器可以獲得<30的L*值,盡管其打標速度比上述方式要低得多。
用0.15納秒和1納秒脈沖處理的0.8mm厚的銅質材料的表面效果 02銅金屬的激光表面毛化處理
對銅金屬進行激光拋光以形成對比是相對較為熟知的方法,但是,因為這種金屬與生俱來具有的高反射率,要獲得深色的標記通常會更具難度。
如圖5所示,通過與拋光前的表面粗糙度對比,可以看出經激光處理表面的粗糙度差異(<1μmRa)。但表面結構更為復雜,表面區域得到了極大改善,從而形成了高吸收性表面。這從圖4可以看出。
用150皮秒脈沖處理的銅金屬
最右側部分是未經激光處理的拋光區域,左側則是激光處理過的區域。這些特征與鋁質材料上形成的特征相比,要小一個數量級(圖3)。所獲得的表面結構支持了非線性、等離子控制過程的假設,而不是傳統的熱去除材料的過程。進一步的相關證據是,同樣的激光參數可用于處理20μm厚的銅箔,而不會造成材料變形,盡管使用的是平均功率為28.5 W的亞納秒激光器。
03玻璃的激光表面毛化處理或打標
出乎意料的是,與用于銅質材料幾乎相同的參數,也可應用于無涂層硼硅酸鹽玻璃上下層表面的打標。這進一步支持了有關非線性吸收是由于高峰值功率光纖激光器的影響而產生的假說。檢查劃片區,可以看到“龜裂”情況非常有限,裂紋<10μm,表面粗糙度<5μmRa。圖6顯示了低倍鏡下的劃線及非開裂狀況。
低倍鏡下,處理過的銅金屬上的劃線形態
轉載請注明出處。